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We study the finite-size effect on the dispersion relation, group velocity, and transmission curves of one-
dimensional finite-size coupled-resonator optical waveguide(CROW) structures. Both the dispersion relation
and the group velocity curves of a finite-size CROW oscillate along those of the corresponding infinite-
extended ones. The oscillations can be suppressed by matching the equivalent admittance of the surrounding
medium to that of the unit cell. Thelen’s method is used to find the parameters of the matching layer to reduce
oscillations on the group velocity and transmission spectra, and to analyze the structure parameters that
determine the bandwidth and the group velocity.
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I. INTRODUCTION

Photonic crystals(PCs) exhibit many unique features that
are very attractive for photonic integrated circuits[1–3]. In
addition to the well-known stop bands, recent experimental
and theoretical works on the pass bands have revealed many
interesting features. For example, there is a series of trans-
mission resonances in the pass band, and the resonances near
the band edge exhibit a low group velocity but a high trans-
mittance, which can be used to build compact optical delay
lines for ultrashort electromagnetic(EM) pulses[4]. The ba-
sic requirement for the delay lines is the transmission of
ultrashort pulses with small attenuation and distortion. How-
ever, study on a one-dimensional(1D) and three-dimensional
(3D), N-period, layered structure found that both the group
velocity and the width of the resonance decrease exponen-
tially with the number of period, and thus the small group
velocity was found to be accompanied with distortion of the
ultrashort pulse due to the group velocity dispersion[5–7].
An impurity pass band can be formed in the stop band by
inducing a periodic arrangement of defects into a PC’s pe-
riod structure[8]. Although EM waves are tightly confined at
each defect site, photons can hop between proximal defects
due to overlapping of the confined modes, and a tight-
binding (TB) approach was proposed to study such impurity
pass band. Such a defective PC structure, the so-called
coupled-resonator optical waveguide(CROW), exhibits
some promising features over their conventional waveguide
counterpart[8–11]. Yariv et al. proposed the possibility of
making lossless and reflectionless bends in a CROW[8]. The
effect of the defect size and the interval between neighboring
defects was investigated to improve its behavior as delay
lines [5].

The practical PCs, especially those in photonic integrated
circuits, are always of finite-size(i.e., finite period) along the
propagation direction, and their boundary conditions, i.e., the
optical properties of the entry and exiting surfaces, will play
an important role in their optical behaviors[12–15]. Olivier
et al. observed oscillations in the transmission spectra of the
impurity pass band due to the Fabry-Perot-type interference
between the two ends of the CROW[12]. These oscillations
will result in shape distortion of EM pulses transmitting

through the CROW. In this paper, we study the finite-size
effect on the dispersion relation and the group velocity of 1D
CROW structures. The results of 1D photonic crystal can
also provide a general understanding of the EM properties in
two-dimensional(2D) and three-dimensional(3D) PCs [4],
meanwhile avoiding an arduous task of the 2D and 3D com-
putationally intensive eigenvalue problem. Our study shows
that both the dispersion relation and the group velocity
curves of a finite-size CROW will oscillate about those ob-
tained from the TB method. Thelen’s method is used to op-
timize the configuration of the CROW structure to reduce the
oscillations on the transmission and group velocity curves.
The structure parameters which determine the bandwidth and
the group velocity are also analyzed.

II. CROW STRUCTURES

The T-matrix method, which was described in detail in
Refs.[16–19], is used to calculate the transmission spectrum
fTsvdg and the dispersion relationfvsKdg of the 1D CROW
structure which is finitely extended along the wave propaga-
tion direction. On the other hand, the TB approximation ap-
proach has been successfully used to determine the CROWs
dispersion relation, in which the CROW structure is tacitly
considered to be infinitely extended[9,8]. For comparison,
the TB approach is also used to calculate the dispersion re-
lation of the infinitely extended 1D CROW. The group ve-
locity vg is obtained by differentiating the dispersion curve
(i.e., vg=dv /dk). The 1D(PC) structure we consider here is
a quarter-wave Si3N4/air Bragg stack. Hereafter, the Si3N4
layer (high refractive index) and the air layer(low refractive
index) are denoted asH and L, respectively. The optical
thickness of both theH andL layers isl0/4, wherel0 is the
central wavelength of the first stop band of the PC. The
central wavelengthl0 is chosen to be 1.55mm (i.e., the
wavelength used in the fiber optical communication). De-
fects are introduced into the PC by periodically insetting air
layers into the multilayer stack, forming a CROW structure.
The inset layer is denoted asLin. An example of the CROW
structures discussed in this paper is illustrated in the inset of
Fig. 1. Its unit cell isLHLHLHLHLin, i.e., consisting of four
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H layers, fourL layers, and oneLin layer. The CROW struc-
ture shown in Fig. 1 can be written as:
air/sLHLHLHLHLindN/air (here,N=5).

The optical thickness of theLin layer sxl0/4d will deter-
mine the position of the impurity band. IfLin is the same as
L (i.e., x=1), the central position of this impurity band will
be located at the center of the stop band. Figure 1 shows the
transmission spectrum of the CROW structure
air/sLHLHLHLHLd5/air, in which there are four defects. The
refractive indexes of theH layersnHd and theL layersnLd are
set to be 2.1 and 1.0, respectively. Figure 2(a) shows the
enlarged view of the transmission and group velocity curves
around the central wavelength. The impurity pass band
shows large oscillations because it contains four resonances.
The transmittance contrast, defined assTmax−Tmind / sTmax

+Tmind, whereTmax/Tmin is the maximum/minimum transmit-
tance, around the center is near 97.9%. Similar to the normal
pass bands of a PC the impurity pass band would normally
consist ofN resonances for a CROW composed ofN defects
[5–9]. These resonances exhibit nearly unity transmittance,
and meanwhile a very low group velocity(smaller than
10−2c, wherec is the light velocity in vacuum). Although
each of these resonances can be independently used as a
delay line of pulses, pulses shorter than 50 ps transmitting
through it will be distorted because of the narrow width of
the resonancess,1 nmd. Therefore, in order to use the
CROWs for ultrashort pulses, the oscillations on the group-
velocity–transmission curves should be inhibited. For a
finite-size CROW, the optical properties of the entry and ex-
iting surfaces, can play an important role in their optical
behaviors. Fortunately, the oscillations within the whole(or
partial) impurity pass band can be suppressed by matching
its surrounding environment to its unit cell. Figure 2(b)
shows the transmission and group velocity curves of the

CROW structure air/HLHLsLHLHLHLHLd5LHLH /air. The
impurity band of this CROW is quasiflat around the central
wavelength. The transmittance contrast around the central
wavelength is lower than 4.1% within a 18-nm-wide range,
as a result, a 0.3-ps pulse can transmit with almost no dis-
tortion and loss.

III. THE ORIGIN OF THE OSCILLATIONS:
THE FINITE-SIZE EFFECT

Figure 3(a) shows the dispersion curves ofv (frequency)
vs k (wave vector) of the CROW structures
air/sLHLHLHLHLdN/air, whereN is 5 and 15, respectively,
v0 is the central frequency of the impurity pass band
si.e., v0=s2p /l0dcd, andR is the distance between the two
neighboring defects. For comparison, the dispersion curve
calculated by the TB approachsi.e.,N→`d is also presented
in Fig. 3(a). The curves ofN=5, 15 exhibit steplike oscilla-
tions about the TB curve. The number of these steps isN-1
(equal to the number of defect), and with increasingN, its
deviation from the TB curve decreases, and at largeN, it
becomes nearly the same as the TB curve. In fact, the experi-
mental CROW samples are always of finite size along the
wave propagation direction, and the measured dispersion re-
lation presented by some experimental reports clearly shows
this kind of steplike oscillation behavior[9].

The group velocityvg is the differentiation of the disper-
sion relationsvg=dv /dkd. The differentiation of the oscillat-
ing dispersion curves of the finite-size CROWs shown in
Fig. 3(a) will result in oscillations in the group velocity
curves. Therefore the oscillations in the group velocity curve

FIG. 1. The transmission spectrum of the CROW structure
air/sLHLHLHLHLd5/air calculated by theT-matrix method, where
HsLd represents the quarter-wave Si3N4 (air) layer. The inset shows
the schematic sketch of the CROW air/sLHLHLHLHLind5/air.

FIG. 2. (a) The enlarged view of the transmission(solid curve)
and group velocity(dotted curve) curves around the central wave-
length of the CROW structure air/sLHLHLHLHLdN/air. (b) The
transmission(solid curve) and group velocity(dotted curve) curves
of the CROW structure air/HLHLsLHLHLHLHLd5LHLH /air.
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shown in Fig. 2(a) originate from the finite-size effect. How-
ever, as shown in Figs. 2(b) and 3(b), the oscillations can be
suppressed by adding matching layers at the CROW’s two
end surfaces to match the equivalent admittance of the envi-
ronment to its unit cell. In the following, Thelen’s method
will be used to derive the parameters for the required match-
ing layer.

IV. QUASIFAT IMPURITY BAND

A 1D infinitely extended CROW structure is periodic
since defects contained in it are periodically arranged. The
basis of Thelen’s method is to divide the CROW structure
into a series of symmetrical unit cells, and the properties of
the CROW can be predicted by finding the equivalent admit-
tance of the unit cell[20]. For example, a CROW

¯LHLHLHLHLinLHLHLHLHLin¯

can be divided into the arrangement

¯fsx + 1d/2gL HLHLHLHfssx + 1d/2dgL

fsx + 1d/2gL HLHLHLHfsx + 1d/2gL ¯ .

The unit cell fsx+1d /2gLHLHLHLHfsx+1d /2gL is a sym-
metrical assembly. According to Epstein, any symmetrical
assembly of film stacks can be replaced by a single layer
f21g. Therefore this unit cell can be replaced by a single
layer with an equivalent admittancesEd and optical thick-

nesssa8d, and the two parametersE anda8 are functions of
wavelength. Let us consider a simple example withx=1.
The finite-periodic stacksLHLHLHLHLdN can be equiva-
lent to a single layer with thicknessNa8sld and index
Esld. Figure 4sad shows the equivalent admittanceE as a
function of wavelength. The equivalent admittanceE is a
real and almost a constant around the center of the impu-
rity pass band. At the central frequencyv0, the equivalent
admittanceE is nL

5 /nH
4 <0.05. At theedges of the impurity

band, it tends towards zero.
The CROW structure air/sLHLHLHLHLdN/air can be

written as air/E,Na8 /air. Like the case in a Fabry-Perot eta-
lon, the transmittance will oscillate between 1 andTminsld,
whereTminsld is given by

Tminsld = TS
2/s1 + RSd2, s1d

where Rs=fsE−nend / sE+nendg fsE−nend / sE+nendg* , Ts

=4E Resnend / sE+nend sE+nend* , and nen is the equivalent
admittance of the surrounding medium. According to Eq.
s1d, if nen is equal toE, Tminsld will be 1, and thus the
impurity band will become flat and of unity transmittance.
Figure 5 shows the transmittance spectrum andTminsld of
the CROW air/sLHLHLHLHLd10/air. Thesurrounding me-
dium is air snen=1.0d, whose refractive index is quite dif-
ferent from the admittance Esld shown in Fig. 4sad, so the
transmittance spectrum shows large oscillations. There-
fore, in order to have a quasiflat impurity pass band with
high transmittance, the surrounding medium should be
matched to the equivalent admittanceEsld, which can be
realized by adding a suitable number of quarter-wave

FIG. 3. (a) The vskd dispersion curves of the CROW struc-
tures air/sLHLHLHLHLdN/air, where N is 5 (solid curve), 15
(dashed curve), and ` (dotted curve), respectively.(b) The vskd
dispersion curves of the CROW structures air/HLHL
3sLHLHLHLHLd5LHLH /air (solid curve) and
air/sLHLHLHLHLd` /air (dotted curve), respectively.

FIG. 4. (a) The equivalent admittance of the unit cell
LHLHLHLHL. (b) The real component(solid curve) and the imagi-
nary component(dot curve) of equivalent admittance of the match-
ing layer stack air/HLHL.
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matching layers to the two end surfaces of the CROW
structuresf22,23g. In the case of air/sLHLHLHLHLdN/air,
adding the matching layer stackHLHL can improve the
CROW’s properties. The equivalent admittance of
air/HLHL is shown in Fig. 4sbd. At v0, the equivalent
admittance issnL

4 /nH
4 d nair=nL

5 /nH
4 , which is the same as

that of the CROW’s unit cell. Away fromv0, the equiva-
lent admittance is a complex. Within the range of the im-
purity pass band, the real component does hardly change,
and the imaginary one varies between,±0.05. Obviously,
the CROW air/HLHL sLHLHLHLHLdN LHLH /air has
smaller difference of the equivalent admittances between
the unit cell and its environment than that of the CROW
air/sLHLHLHLHLdN/air, so its impurity band fFig. 2sbdg
should exhibit much smaller oscillations than that of the
later. Around v0, the two equivalent admittances are
close, so both the transmittance and group velocity are
quasiflat in the central part of the impurity band.

As shown in Fig. 4, the equivalent admittance of the unit
cell varies considerably within the impurity pass band. The
equivalent admittance dispersions are not similar between
the unit cell and the air/HL¯HL matching stack. Although
it is possible to make the two equivalent admittances be
equal at a certain point, it is difficult to match the unit cell to
its environment within the whole impurity pass band. Con-
sequently, oscillation suppression only occurs in the band
regions in which the two admittances are very close, as
shown in Fig. 2(b). One optimization way is to inset between
the unit cell and the matching stack with a symmetrical
multilayer assembly whose dispersion is similar to that of the
unit cell. In the following, the CROW structure air/
HLHL LHLHLHLHL sLLLHLHLHLHLLLd5 LHLHLHLHL
LHLH /air is taken as an example. Figure 6(a) shows the
equivalent admittances of LLLHLHLHLHLLL and
LHLHLHLHL. The two equivalent admittances have the
same value at the central frequencyv0 and all exhibit a
gradually deceasing admittance as the values of frequency
moves away fromv0. Figure 6(b) shows the equivalent ad-
mittanceE of air/HLHL LHLHLHLHL. At v0, the equiva-
lent admittance is the same as that of the CROW’s unit cell

LLLHLHLHLHLLL. The dispersion of its real component is
similar to that of the unit cell, and the variation of its imagi-
nary component is reduced, which is less than ±0.01 within
the range of the impurity pass band. Because the equivalent
admittances of the unit cell and the surrounding medium are
matched well within the whole band, the whole impurity
pass band becomes quasiflat, as shown in Fig. 6(c). The os-
cillations in the transmittance within the whole band are sup-
pressed well, and the transmittance contrast is reduced to
below 0.7% in the whole 23-nm-wide impurity band.

The above example indicates that the surrounding me-
dium plays an important role in the optical properties of the
CROW structures, and a quasiflat impurity band with unity
transmission can be obtained when the equivalent admittance
of its surrounding medium is matched to that of the unit cell.

FIG. 5. The transmission spectrum(solid curve) and Tminsld
curve (dotted curve) of the CROW air/sLHLHLHLHLd10/air. The
straight dashed line is the unity transmittance.

FIG. 6. (a) The equivalent admittances of the symmetrical
assemblies LLLHLHLHLHLLL (solid curve) and LHLHLHL
(dotted curve). (b) The real and imaginary components of
equivalent admittance of the matching layer stack air/
HLHL LHLHLHLHL (solid curve). For comparison, the equi-
valent admittance of the unit cellLLLHLHLHLHLLL (dotted
curve) is also shown.(c) The transmittance(solid curve) and
the group velocity (dotted curve) of the CROW air/
HLHLLHLHLHLHL sLLLHLHLHLHLLLd5 LHLHLHLHL LHLH/
air.
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For the CROWs with defect layers ofxÞ1 i.e., the thickness
of the layers not of quarter wave), the method presented here
will also work though the central frequency of the impurity
band will be tuned within the band gap and the matching
layers will not be simply of quarter-wave thickness.

V. DEPENDENCE OF BANDWIDTH AND GROUP
VELOCITY ON STRUCTURE CONFIGURATION

As has been shown, the surrounding medium has a deci-
sive effect on the oscillations in the impurity pass band. On
the other hand, the configuration of the unit cell plays a
major role on the group velocity and the bandwidth of the
impurity pass bands. The group velocity and the bandwidth
are the two important properties for the applications related
to CROWs such as optical delay lines. Assuming that the
unit cell isLH¯LHL, which consists ofm periods of theHL
stacked layers and one defect layer same as theL layer,
according to Thelen’s design approach[20,23], the band-
width of the impurity pass band is given by

Ud lB

l0
U =

4

p
S nL

nH
Dm snH − nLd

nH
. s2d

The smaller the ratio of the refractive index between theL
andH layer snL /nHd is, and the larger them number is, the
narrower the impurtiy band is. A largerm number means a
longer distance between the two neighboring defectssRd.
According to Eq. 7 in Ref.f8g, the group velocitysngd is
given by

ng = dvskd/dk=
pcR

l0
Sd lB

l0
DsinskRd, s3d

where k is the wave vector along the propagation direction,
which spans the region off0,p /Rg. Since the matching pro-
cess can make the portion of the impurity pass band around
l0 be quasiflat, let us consider theng value atl0, which is
equal tospcR/l0d / sd lB/l0d. Apparently, the narrower the
impurity is, the lower thevgsl0d value is.

For the unit cellLH¯LHL, the m-periodic LH multi-
player stack forms a reflector, so the CROW structure can be
written as

¯reflector/defect layer/reflector/defect layer/reflector¯ .

The defect layer between two reflectors forms a microcavity.
The larger them number is, the higher the reflection of the
reflector isf22,23g, and consequently the higher theQ factor
of the microcavity will be. For the case in which the EM
wave is highly confined in the cavity, the group velocity of
the EM modes will become very small. On the other hand,
with the increase of them number, the distance between two
neighboring cavities is also larger, and thus the overlap be-
tween the evanescent EM modes will be small. In solid-state
physics, it is well known that the expansion of the energy
level due to the overlap of atomic wave functions is narrow
if the overlap is weak. Analogously, the width of the impu-
rity band will be narrower if the coupling between the neigh-
boring cavities is weaker. Therefore both the bandwidth and
the group velocity will decrease with the increase of the pe-

riod numbersmd of the HL layers in the unit cell. In addi-
tion, very small group velocity can be obtained if the two
materials composed for the CROWs have a high refractive
index contrast. For example, silicon is optical transparent
around 1.55mm, and has a high refractive index
s,3.4d. If the H andL layers are chosen to be silicon and
air, and the unit cell isLLLHLHLHLHLLL, the CROW
structure air/HLHL LHLHLHLHL sLLLHLHLHLHLLLd5

LHLHLHLHL LHLH /air is with a group velocity lower
than 0.025c. Its bandwidth is,4 nm, and thus 3-ps EM
pulses can transmit it without distortion.

Moreover, the number of the unit cell(N) of the CROWs
does not significantly affect the group velocity and the band-
width of the impurity pass band. Figure 7 shows the group
velocity and the transmittance spectra of the CROW
air/HLHL sLHLHLHLHLdN LHLH /air with N=3 and 10,
while the inset showingvgsl0d versusN, which is calculated
by the T-matrix method. With increasingN, there is no big
change in both the group velocity and the bandwidth though
the impurity band becomes more sharply defined. This is in
contrast to the case of pulse propagation at the photonic
band-edge resonance of a prefect PC[4], where both the
group velocity and the width of the band-edge resonances
decrease exponentially with the period number. Although a
perfect PC has also been proposed for applications of optical
delay lines, the delay time and the width threshold of pulses
through it are two directly correlated and conflicting factors.
In the case of a CROW, the delay time and the width thresh-
old are independent of each other and hence can be adjusted
independently. For example, additional delay time can be
gained by just increasing the cell number of the CROW,
while the width threshold does not change.

FIG. 7. The group velocity and the transmittance curves of the
CROW air/HLHL sLHLHLHLHLdN LHLH /air with N=3 (solid
curve) and 10 (dotted curve). The inset showsvgsl0d versus the
number of unit cellN.
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VI. CONCLUSION

The dispersion relation of a finite-size CROW oscillate
about that of the corresponding infinite-extended one,
which results in oscillations in the group velocity and trans-
mission curves. It is shown that such an oscillation origi-
nates from the finite-size effect. To reduce or even remove
the oscillations on the transmission and group velocity
curves, Thelen’s method is utilized to find the parameters
of the matching layer to match the equivalent admittance
of the surrounding medium to that of the unit cell. As
the photonic band-edge resonance of a prefect PC, the

CROW structures have potential application in optical
delay line. As an example, an optimized CROW
structure air/HLHL LHLHLHLHL sLLLHLHLHLHLLLd5

LHLHLHLHLHL LHLH /air, where theH and L layers are
silicon and air, a 3-ps electromagnetic pulse operating at
1.55mm can transmit it at a group velocity lower than
0.025c without distortion. Furthermore, it is shown that the
bandwidth and the group velocity in the impurity pass band
depend on the structure configuration of the unit cell, but not
on the number of the unit cell, which is in contrast to the
case of the photonic band-edge resonance of a perfect PC.
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